小児の成長に伴う計測値の標準値作成方法

厚生労働科学研究費補助金 臨床研究・予防・治療技術開発研究事業「重症川崎病患者に対する免疫グロブリン・ステロイド初期併用 投与の効果を検討する前方視的無作為化比較試験」 佐地班

厚生労働省科学研究費補助金 難治疾患克服研究事業 「難治性川崎病の治療ガイドライン作成研究」 加藤班

日本川崎病学会 小児冠動脈内径標準値作成小委員会

国立成育医療研究センター研究所 坂本なほ子 群馬大学大学院小児科学分野 小林 徹

川崎病による心血管障害の診断基準

厚生省研究班、神谷ら(昭和58年,1983年)

1.心エコー図による診断

iii)2DE上の冠動脈障害

2DE上の拡大性病変(DL)の診断にあたって、診断基準を 計測数値で表わすことが望ましいと考えられるが、正常計測 値の集積が不十分な現在、**暫定的**に次の基準によって診断 をおこなう。

すなわちDLの診断にあたっては、周辺冠動脈の内径との比較や、年齢差、2DE上の冠動脈径の左右差、経過中の内径変化などを充分に考慮する。周辺冠動脈の1.5倍以上の拡大は、DLとしてよい。また、5歳以下では、2DE上の冠動脈径が3mm以上の場合、DLとしてよい。

Durongpisikul 論文

Durongpisikul K, Gururaj VJ, Park JM, et al.

The prevention of coronary artery aneurysm in Kawasaki Disease:

A meta-analysis on the efficacy of aspirin and immunoglobulin treatment.

Pediatrics 1995; 96; 1057-1061.

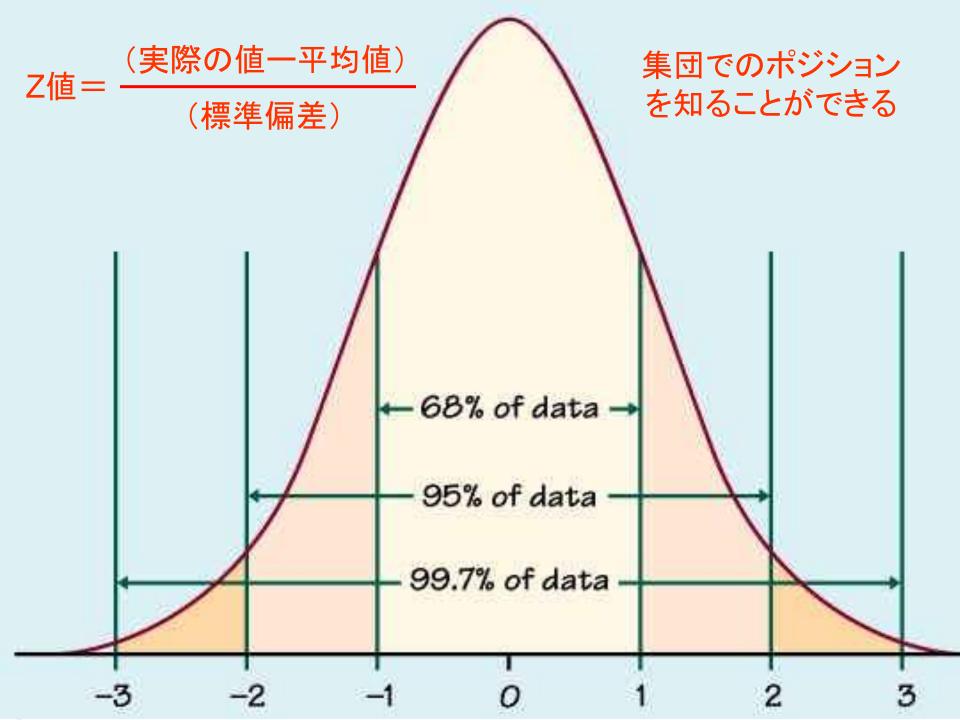
冠動脈瘤は心エコーまたは血管造影で以下の基準を満たすもの

- A) 冠動脈の内径が5歳未満で3mm以上、5歳以上で4mm以上
- B) 冠動脈内腔が明らかに異常
- 神谷らの基準より、より簡略化されている。
- 川崎病の急性期治療研究において世界的に汎用されている。
- ・日本小児循環器学会作成の川崎病急性期治療のガイドライン も参考資料としている。

成長発達が考慮されていないため「どんぶり勘定」感は否めない

そこででてくるZ score

- ・現在北米の冠動脈病変は<mark>冠動脈径</mark>Z score値で決 定される。
- ・ 個々の値から平均を引いた後に標準偏差(SD)で割ってでた値をZ scoreと呼ぶ。
- ・ 絶対値を標準化する事がZ scoreの意味。
- 標準化とは、見ただけでその数字の意味が分かるようにすることを言う。
- 標準化する仮定で、スコアのSDの便利さが分かってくる。


たとえば・・・

- うちの息子が全国テストで80点を取りました
- ほめてあげても良いでしょうか?

平均点50点、最高点80点だったら・・・
平均点90点、最高点100点だったら・・・

ほめるために必要な情報 平均点(試験の難易度) 点数の分布(全体の位置を推定)

Zscoreはこれらの情報を盛り込んだ指標

English

About WHO

printable version

Countries

WHO Child Growth Standards: Methods and development
Length/height-for-age, weight-for-length, weight-for-height and body mass

index-for-age

Health topics

Child growth standards

Publications

Data and statistics

Suggested citation: WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards: Length/heightfor-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: Methods and development. Geneva: World Health Organization, 2006 (312 pages). Download complete document [pdf 27.30Mb]

Programmes and projects

Child growth standards

The Multicentre Growth Reference Study

Standards

Training

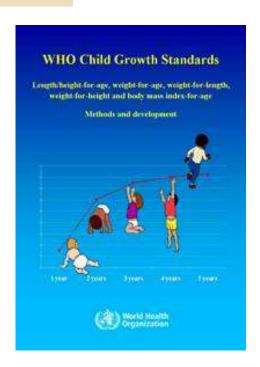
Software

Cover page [pdf 101kb]

WHO Multicentre Growth Reference Study Group [pdf 63kb]

Acknowledgements [pdf 42kb]

Glossary [pdf 73kb]


Table of contents [pdf 67kb]

Executive summary

- 1. Introduction [pdf 80kb]
- 2. Methodology [pdf 158kb]
- 3. Length/height-for-age standards [pdf 7.64Mb]
- 4. Weight-for-age standards [pdf 5.84Mb]
- 5. Weight-for-length/height standards [pdf 6.21Mb]
- 6. BMI-for-age standards [pdf 7.44Mb]
- 7. Computation of centiles and z-scores [pdf 171kb]
- 8. Conclusion [pdf 85kb]
- 9. Bibliography [pdf 71kb]

Appendix A [pdf 63kb]

Order from WHO bookshop

Corporate links

De Zorzi 論文 (z score)

De Zorzi A, Colan SD, Gauvreau K, et al.

Coronary artery dimensions may be misclassified as normal in Kawasaki disease. J Pediatr 1998; 133; 254-258.

125例におけるLMT, LAD, RCAのそれぞれにおいて、小児の体表面積と平均冠動脈径、標準偏差の関係を示した。これにより求めたZスコアにより川崎病患者の冠動脈拡大の評価することを提唱した。

Table I. Regression models used to construct z-scores

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Mean	SD	
LMCA	1.688 + 0.995 BSA	0.420	
LAD	1.186 + 0.820 BSA	0.356	
RCA	1.503 + 0.499 BSA	0.398	

この論文中の平均の冠動脈径は、BSAとの1次回帰モデルから導かれたとされているが、その対照や方法など詳細が説明されていない。

Zスコア作成方法論が間違っている。

Kurotobi 論文 (z score)

Kurotobi S, Nagai T, Kawakami N, et al.

Coronary diameter in normal infants, children and patients with Kawasaki disease. Pediatr Int 2002; 44; 1-4

71名の小児を対象心エコー法で計測

BSAとLMT、LAD、RCAの径 との関係を直線回帰式にて 示す

Z score曲線ではない 症例数が少ない

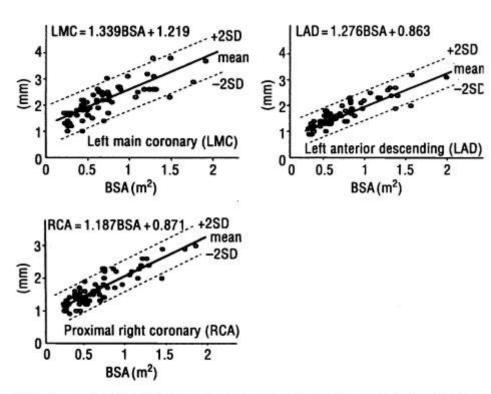


Fig. 1 Relationship between coronary arteries and body surface area (BSA) in the control group. Linear regression graph with probability of 95%.

川崎病の診断、治療と長期管理の AHA Statement (2004)

Newburger JW, Takahashi M, Gerber MA, et al. Diagnosis, Treatment, and Long-Term Management of Kawasaki disease.

Circulation 2004; 110: 2747-2771.

De Zorzi 論文と Kurotobi 論文を引用し、LMT, LAD, RCAの冠動脈径のZスコアを参考に冠動脈の拡大の評価をするように(2.0-2.5, 3.0以上)と提唱した。

BSAとLAD, RCA, LMTの平均値と2 SDs/3SDs の曲線が示されているが、対照数、この曲線の作成方法、妥当性の言及はない。

これもZスコア曲線ではない。

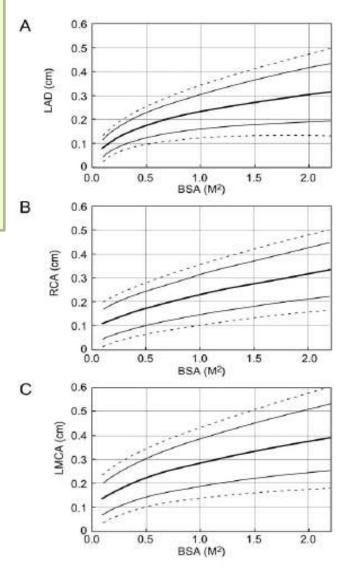


Figure 3. Mean and prediction limits for 2 and 3 SDs for size of (A) LAD, (B) proximal RCA, and (C) LMCA according to body surface area for children <18 years old. LMCA z scores should not be based on dimension at orifice and immediate vicinity; enlargement of LMCA secondary to Kawasaki disease usually is associated with ectasia of LAD, LCX, or both.

McCrindle 論文(z score)

McCrindle, BW, et al.

Coronary arterial involvement in children with Kawasaki disease.

Circulation 2007;116:174-179

1989年から2000年までに心エコーで計測した0-18歳の正常小児221人のデータを対数回帰

 $LMCA = 0.31747(BSA^{0.36008}) - 0.02887$

 $pLAD = 0.26108(BSA^{0.37893}) - 0.02852$

 $RCA = 0.26117(BSA^{0.39992}) - 0.02756$

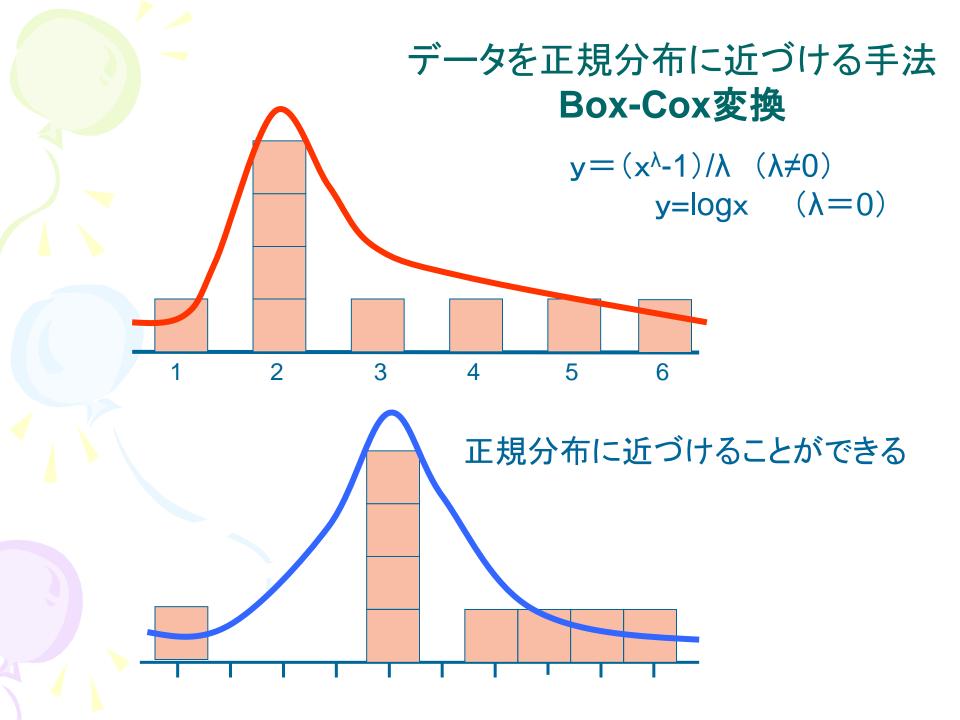
測定データが古くデータ数が少ない やはりZスコア作成の方法論が間違っている

では何がいけないの??

- 回帰分析を行うための必要条件 -

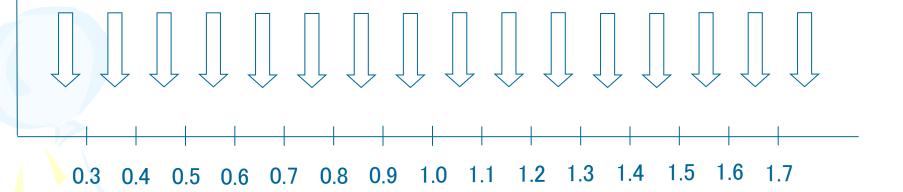
• 説明変数・従属変数共に正規分布している事

この条件をきちんと満たすことはかなりキビシイ 実際の臨床データは歪み・ばらつき・ゆらぎなどが存在

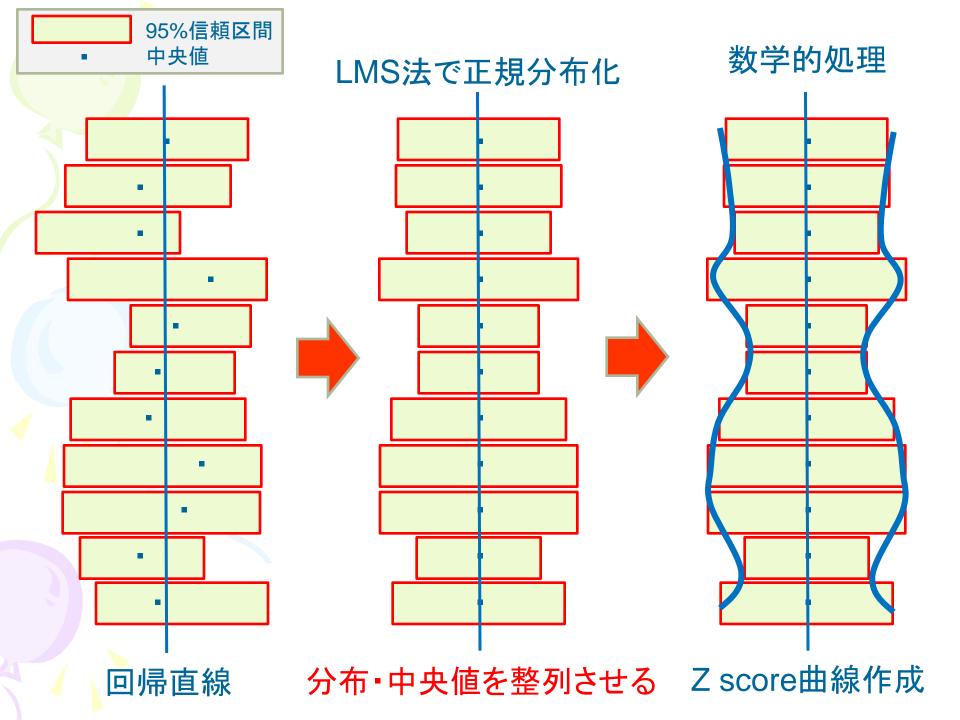

これらの修飾要素を修正する必要がある

体表面積ごとの計測値の分布をひとつひとつ正規分布化する

歪度(λ、L)、中央値(M)、変動係数(S)を 体表面積ごとに連続的に計算し、 Zスコア曲線を作成する。


LMS法

身長、体重の成長曲線、 Zスコア曲線作成ソフトを作成



具体的な方法論は

全体を16のセルに分割

それぞれのセルで歪みや変動を数学的に補正し 各セルを積み重ねて標準曲線化する

スキーに例えると・・・単純に回帰分析

スキーに例えると・・・ LMS法を用いたz score曲線

Fuse 論文 (z score)

布施茂登、森井麻祐子ら 小児の心エコー検査による冠動脈内径の標準曲線の作成 - LMS法(歪度、中央値、変動係数により分布を変化させる統計学的手法による -日児誌 2009: 113:928-934

適切な方法論で作成された「世界初」の冠動脈標準値

心疾患のない544名の 心エコーデータを元に作成 小児の心エコー検査による冠動脈内径の標準曲線の作成 LMS法(歪度,中央値,変動係数により分布を変化させる統計学的手法)による

NTT東日本礼觀病院小児科

布施 茂登 森井麻祐子 大柳 玲嬉 黑岩 由紀 母坪 智行 森 俊彦

要旨

川崎病の冠動脈病変をより詳細に診断することを目的として、心エコー検査による小児の冠動 脈内径の標準曲線を作成した、対象は当然の小児心臓外束を受診した患者のなかで、冠動脈内径の値 をつない患者 544 名。心エコー検査時に冠動脈内径を計測した。統計学的方法は、冠動脈内径の値 をさまざまな種類の分布を正規分布化することのできる Box Cox 変換を用い。冠動脈内径の分布 を正理分布化した。正規分布化したために歪み度をもったデータから平滑化曲線を作成すること ができる LMS 法により、最適モデルの Z スコア (+2 +1, 0, -1, -2) 曲線を作成した。年齢。 体表価積に対する冠動脈内径の中央値 (M)、 Z スコア +2 -2および L (主度)。 S (変動係数)を 表に示した。川崎病における冠動脈内変の診断に断し、心エコー検査によるこれらの冠動脈内径 の標準曲線は有用になると思われる。

キーワード:川崎病、延動脈、LMS法、正常値、小児

LMS法を用いた解析は500症例が必要最低症例 →標準誤差が大きくデータの信頼度が低い

そんな背景で始まったのが

「小児冠動脈内径標準値作成多施設共同研究」

日本川崎病学会 小児冠動脈内径標準値作成小委員会

委員長

佐地 勉 東邦大学医療センター大森病院小児科教授

委員

新垣義夫 倉敷中央病院小児科主任部長

小川俊一 日本医科大学小児科教授

賀藤 均 国立成育医療センター第一専門診療部循環器科医長

小林 徹 群馬大学大学院小児科学分野助教

坂本なほ子 国立成育医療センター研究所成育社会医学研究部成

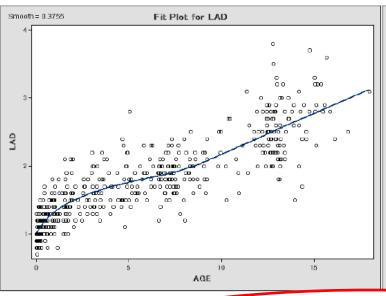
育疫学研究室室長

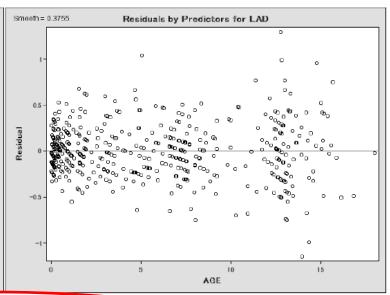
濱岡建城 京都府立医科大学大学院小児循環器•腎臓学教授

布施茂登 NTT東日本札幌病院小児科医長 (五十音順)

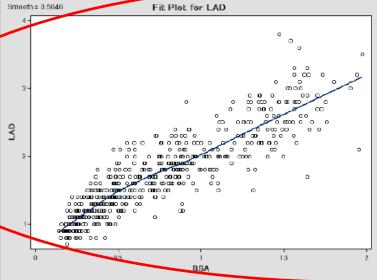
研究代表者•事務局:布施茂登

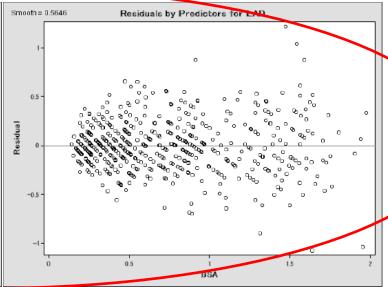
研究事務局: 小林徹 データセンター: 坂本なほ子

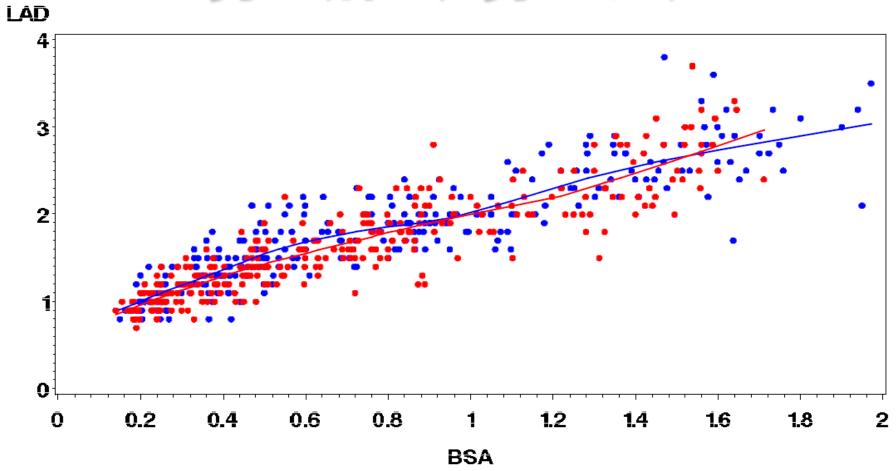

研究開始への2nd step


続いて・・・

布施先生の先行研究データを使い統計学的方法論について検証

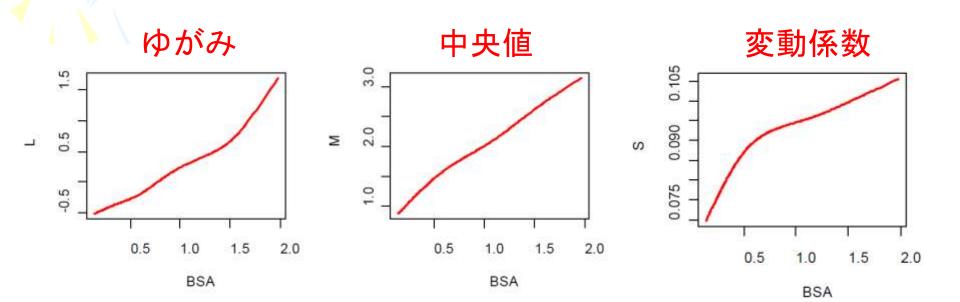

左前下降枝内径と年齢・体表面積との Z score曲線(n=544)


年齡



体表面積

男女別 (•男 •女)


若干ずれているように見えるがNが少ないことによる誤差範囲かもしれない

念のため男女別に計測し解析することに

まずデータに対してLMS法を適用してモデルの簡略化ができないかどうかを検討しました。例えば、L曲線が定数を取るようであれば、目的変数に対し変数変換を行い、線形回帰分析を行うだけで、ほぼ同様の解析ができるはずです。

ところが、今回の解析結果によると、体表面積の変化に伴い、大きくL曲線(ゆがみ)が変化しています。このような場合、通常の回帰分析では偏りが生じてしまい、良い推定が出来ません。そこでLMS法を使うのが最善であると判断しました。

国立成育医療センター研究所 坂本なほ子先生

+2SDのZスコアに関する推定精度を検討するため、n=500、2000 4000のデータを作成してBSA 0.4, 0.8, 1.4のZスコアを集計

BSA	n	Mean	STD	Min.	1st Qu.	Median	3rd Qu.	Max.
0.4	4000	2.124	0.016	2.081	2.113	2.123	2.133	2.176
0.4	2000	2.123	0.022	2.060	2.108	2.123	2.138	2.190
0.4	500	2.120	0.048	1.959	2.087	2.119	2.152	2.321
0.8	4000	2.933	0.020	2.870	2.919	2.934	2.947	3.029
0.8	2000	2.933	0.026	2.861	2.916	2.931	2.951	3.015
0.8	500	2.927	0.049	2.805	2,895	2.924	2.958	3.150
1.4	4000	4.139	0.033	4.043	4.116	4.139	4.161	4.236
1.4	2000	4.139	0.047	3.992	4.107	4.138	4.170	4.300
1.4	500	4.135	0.088	3.875	4.071	4.131	4.190	4.450

総数4000人の場合

BSA 0.4 or 0.8のときは、±2STDが0.1mm以内に収まっており、Zスコアを小数点第1位の単位で精度良く推定するのに十分な値であった。しかし、BSA 1.4のときには、元々のデータ数が少なめで標準偏差が大きいことから、やや推定精度が低下した。

総数2000人の場合

BSA 0.4 or 0.8のときは、±2STDがほぼ0.1mm以内に収まっており、推定精度が大きく低下することはなかった。しかし、BSA 1.4のときには、±2STDがほぼ0.2mmになり、推定にやや影響が出る可能性を認めた。

総数500人の場合

いずれの体表面積でも標準偏差は2000人の場合に比べて2倍程度悪い。

冠動脈の内径を体表面積毎に16のセルに分割し

ーセルあたり200症例以上

男女それぞれ3200症例

総数6400症例

を目標症例数とする